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Eventual goal: low test error, meaning
R(w) .= EZ(Yf(X; w)) as small as possible,

where f(X; W) = O'L(WL . -O'2(W20‘1(W1X)) - )
Intermediate steps: good optimization, meaning

n
R(w) := %Zﬁ(yif(xi; w))  as small as possible,
i—1

and good generalization, meaning R(w) = ﬁ(w).

Issue: all existing generalization bounds are hopelessly loose.



Eventual goal: low test error, meaning
R(w) .= EZ(Yf(X; w)) as small as possible,

where f(x; w) = o (WL - - o2(Wao (Wix)) - - +).
Intermediate steps: good optimization, meaning
N 10
R(w) = - > C(if(xi; w)) as small as possible,
i=1
and good generalization, meaning R(w) = ﬁ(w).

Issue: all existing generalization bounds are hopelessly loose.

Today’s goal: implicit bias of gradient descent.

Understand which networks are preferred by gradient descent.
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RBF SVM. Narrower RBF SVM.
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Quadratic SVM. ReLU network.
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Linearly separable data; gradient descent:

. . 10
wit1 = w —n [R{wm), R(w) = - > In(L + exp(—yjxw)).
=1
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Linearly separable data; gradient descent:

. . 10
wit1 = w —n [R{wm), R(w) = - > In(1 + exp(—yjx' w))
=1






Linearly separable data; gradient descent:
. . 10
Witr = wi = [RMw),  R(w) =— > In(L + exp(=yx'w)).
j=1

w; — max margin (GD (Soudry et al., 2017), CD (Telgarsky, 2013)).


















Shallow network, early training.

» Shallow network: train only inner layer (Wj)jmz1 in
m

x B fx;w):= %L Zsja(ijx),
m =

where s; ({31}, and w;(0) NI, and ReLU o.



Shallow network, early training.

» Shallow network: train only inner layer (WJ)jm:1 in
m

x B fx;w):= %L ZSJ'O'(WJ-TX),
m i=1

where s {31}, and wj(0) [N, and ReLU o.

Goals:

» NTK regime (near initialization).

» Small width polylog(n) (prior: poly(n)).

» Tight sample complexity examples (e.g., é(d/ez)).
Catch: assume exists large margin infinite-width solution.
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Shallow network, early training.

» Shallow network: train only inner layer (Wj)jmz1 in
m

x B f(x;w) = L ZSJ'O’(WJ-TX),
m =1

where s; {31}, and w;(0) [N, and ReLU o.

» Neural tangent kernel: study Taylor expansion at w(0):
x B f(x; w(0)) + OEQ; w(0)), w — w(0) I
= %Lmjzrj:lsj Oy, x1[w; (0)'x = 0] ]
NTK view: early in training, preceding models network.
» Preceding concentrates around infinite-width version:
x D / (W (v), xL[v"x = 0] AN (v),

where W : RY _, RY are infinite-width weights.



NTK margin assumption: (Nitanda-Suzuki, '19),
a linear margin over NTK features:

Exists v > 0and W : RY — RY, with W (v) Lk 1, where

@, y)a.s. . y/lﬂ\/(v),x]l[vTXZO]lﬂN(v)zfy.






NTK margin assumption: (Nitanda-Suzuki, '19),
a linear margin over NTK features:

Exists v > 0and W : RY — RY, with (W (v) ok 1, where

@, y)a.s. . y/lﬂ\/(v),x]l[vTXZO]I]N(v)ny.

Nice properties of this margin:

» The NTK is a universal approximator (with biases):
not really “assumption” (Ji-Telgarsky-Xian '19).

» Distinguishes random/true labels (Ji-Telgarsky *19):
Given (xi){; but random y;, then v < 1/\/20n.

» Sample complexity can be tight.
(More on this shortly.)

Goal: test error e,
samples and time poly(%, 1.In n), width poly(%, In<,Inn).






Theorem (Ji-Telgarsky, 2019).
Suppose width m and samples n satisfy

~ /1 ~ 1 ~/ 1

With pr = 1 — 4, test error ming¢ Pr[f(X; w(s)) B Y] <e.

Remarks.
» Lower bounds: [dist. on (x,y) s.t. m=1/,5 and n =1/,
» Similar theorem for SGD,
but n = Q(1/e?) (tight!).
» [-homogeneous possible via same proof (Chen et al., 2019).
» Prior work: width poly in n,
test error not tight.






Theorem (Ji-Telgarsky, 2019).
Suppose width m and samples n satisfy

~ /1 = 1 =/ 1
m—Q<78> and n—Q(€274> and t—O(wz).

With pr = 1 — 4, test error ming¢ Pr[f(X; w(s)) B Y] <e.

Proof remarks.
» “Short time-scale”:
issues if t increased.
» Training error via perceptron-style proof;
homogeneity crucial.
» Generalization via uniform deviations on loss derivatives.






Multi-layer warm-up: deep linear networks.
» Predictors x B W W _1 - Wix;
data assumed linearly separable.

> Still GD: w(t + 1) := w(t) — n CRQw(t)), where

w(t) = (WL(2),..., Wi(t)).

» Linear predictor, but non-convex training.



Multi-layer warm-up: deep linear networks.
» Predictors x B W W _1 - Wix;
data assumed linearly separable.

> Still GD: w(t + 1) := w(t) — n CRQw(t)), where

w(t) = (WL(), ..., WA(1)).
» Linear predictor, but non-convex training.

Goal (?):

WL(E) - WA(t) 1o L
<, arg max min yi x" u.
W (t) - Wa(t) ] TG
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Zero misclassifications!
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Shallow net, Shallow net,
early training. late training.









Shallow nonlinear setting;:
> Shallow squared ReLU: x B 3 sjo(wi'x)?, 5 ({31}
If no parallel inputs, a universal approximator.
> GD: Wiy := Wi — n CROW).
Goal (?7):

minjyjf(xj-;Wt) t—o00 Cop e .
[, 21 — [ infinite-width max margin ].

Prior work: (Chizat-Bach, 2020) proved this under (a) infinite width
networks, (b) assuming iterate and gradient convergence.

Corollary. under e-covering condition,

lim min; y; f (a; We)
t—oo [\Zﬂ/tlzl

= [ infinite-width max margin ] — 4e.

Proof: via two margin maximization meta-theorems!



Theorem (tool 1: alignment).
If Cpils dilerkntiable, or locally Lipschitz and definable, then

< Wi —E?UWt)
Cuk TR (e )

Interpretation: asymptotic critical point of margin objective!

- 1

Key proof idea: generalized dual potential from linear part!

Prior work: slightly weaker claim for subsequences (Lyu&Li, 2019).






Directional convergence for homogeneous AlexNet on cifar10.



Summary for today.
1. Linear case: background.
2. Shallow network, early training: low test error.

3. Deep network, late training: margin maximization tools.

Thank you!

Ziwei Ji and Matus Telgarsky. “Characterizing the implicit bias via a primal-dual analysis". 2020b.
Ziwei Ji and Matus Telgarsky. “Polylogarithmic width suffices for [...] small test error [...]". 2019.
Ziwei Ji and Matus Telgarsky. “Directional convergence and alignment in deep learning”. 2020a.



